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ABSTRACT  

Prior to geothermal investments, it is critical to accurately determine the potential of the geothermal resource and reservoir temperatures. 

For financial reasons, it may often be necessary to make these evaluations with limited data before the investment starts, and the estimation 

of the reservoir temperature, which is one of the most basic criteria, is very important at this stage. While hydrogeochemical data are used 

in geothermometer calculations, there may be significant differences between calculations due to assumptions. With the expansion of the 

usage areas of artificial intelligence algorithms, these algorithms have started to find a place in the estimation of reservoir temperatures in 

geothermal. For financial reasons, it may often be necessary to make these evaluations with limited data before the investment starts, and 

the estimation of the reservoir temperature, which is one of the most basic criteria, is very important at this stage. In our previous work, 

we employed machine learning models, including deep neural networks (DNNs), to predict reservoir temperatures based on 

hydrogeochemical data from Western Anatolia's geothermal systems. While the DNN model outperformed traditional regression 

approaches, the limited size and variability of the dataset constrained the model's predictive capabilities. In this study, we integrate 

Generative Adversarial Networks (GANs) to generate synthetic hydrogeochemical data, effectively augmenting the existing dataset. By 

enhancing the training data with realistic synthetic samples, we aim to improve the performance and generalization of machine learning 

models for reservoir temperature prediction by this new approach. Our results demonstrate that the GAN-augmented models achieve 

higher accuracy and lower error rates compared to models trained on the original dataset, with the best-performing model achieving an 

RMSE of 6.44 and an MAE of 4.72 using an augmented dataset with a 3:1 synthetic-to-real data ratio, offering a novel approach to address 

data scarcity in geothermal exploration. 

1. INTRODUCTION  

Accurate prediction of geothermal reservoir temperatures is essential for optimizing geothermal exploration and development. Reservoir 

temperature directly influences the feasibility of different geothermal energy applications, from electricity generation to district heating 

and industrial processes. Considering the criticality of near-realistic temperature predictions in geothermal exploration studies, it can 

support the reduction of risk and costs in drilling operations (Tut Haklidir and Haklidir 2020, Ibrahim et al., 2023, Shi et al., 2025). 

Conventional geothermometers, which estimate reservoir temperatures based on the chemical and isotopic composition of geothermal 

fluids, have been the primary tool for geothermal exploration. However, their accuracy can often show significant deviations from actual 

values due to fluid mixing, pressure variations or different fluid interferences, as well as equilibrium assumptions that may not be 

universally valid. These limitations emphasize the need for improved prediction models that account for the complexities and non-

linearities inherent in geothermal systems. 

The Western Anatolia (Türkiye), a region of significant geothermal potential, features high-temperature reservoirs along the Büyük 

Menderes and Gediz Grabens (Tut Haklidir and Şengün, 2020). These areas, shaped by extensional tectonics, show high heat flow and 

thin crusts, making them ideal for geothermal energy production. Geothermal reservoir temperatures often exceed 200°C, supporting 

advanced geothermal power cycles and diverse energy applications in this region. Since 1984, 66 geothermal power plants with different 

technologies and with a total installed capacity of 1,734 MWe have been established in the region, and most of this power is supplied 

along these two large grabens. There are also a large number of low and medium temperature sources and 1338 MWt of residential heating 

is provided in the region (Figure 1). 

In recent years, machine learning (ML) approaches have shown promise in addressing some of the challenges associated with geothermal 

exploration. For instance, studies by Rezvanbehbahani et al. (2017) used ML models to predict geothermal heat flux in Greenland, while 

Holtzman et al. (2018) applied ML to analyze seismic source spectra in the Geysers geothermal field. Closer to geothermal resource 

prediction, our 2020 study utilized ML models, including linear regression, support vector machines (SVM), and deep neural networks 

(DNN), to predict reservoir temperatures based on hydrogeochemical data from Western Anatolia’s geothermal systems. Among these 

models, the DNN provided the most accurate predictions, outperforming traditional regression approaches. However, the limited size and 

variability of the dataset constrained the model’s generalization capabilities, emphasizing the need for more comprehensive datasets. 

Subsequently, Ibrahim et al. 2023 showed that the model can be further improved with natural gradient boosting (NGB) using the data set 

in this publication. This estimation has also created a perspective that reservoir temperature estimation can be improved by using different 

algorithms. 
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Figure 1: Geothermal power plants and district heating systems in the Western Anatolia (Türkiye) 

Data scarcity is a pervasive issue in geothermal exploration, primarily due to the high costs and logistical challenges of acquiring 

comprehensive datasets. Several studies have addressed this challenge by proposing strategies to expand and enhance geothermal datasets. 

For example, Kelly and Mares. (1993) emphasized the importance of combining geophysical surveys with hydrogeological sampling to 

improve dataset comprehensiveness. In more recent work, Cladouhos et al. (2018) demonstrated how integrated datasets from diverse 

sources could mitigate data scarcity and enhance predictive modeling. These efforts highlight the critical role of innovative approaches in 

overcoming the limitations of sparse and incomplete datasets, enabling more accurate geothermal resource assessments. 

Generative Adversarial Networks (GANs) offer a transformative solution to the challenge of data scarcity. GANs consist of two neural 

networks—a generator and a discriminator—that work in tandem to create highly realistic synthetic data. The generator produces data 

samples, while the discriminator evaluates their authenticity, iteratively refining the generator’s outputs. This capability allows GANs to 

model complex data distributions and generate synthetic datasets that closely resemble real-world data. 

GANs have been successfully employed in various resource exploration case studies to improve predictive modeling. For instance, Stabler 

et al. (2024) utilized GANs to generate synthetic seismic data, enhancing the accuracy of subsurface imaging in oil and gas exploration. 

Similarly, Ferreira et al. (2022) utilized the StyleGAN2-based PetroGAN model to generate synthetic petrographic datasets, improving 

the accuracy of mineral exploration and resource estimation models. These examples underscore the versatility of GANs in addressing 

data limitations across different domains, paving the way for their application in geothermal research. 

In geothermal applications, Generative Adversarial Networks (GANs) address data scarcity by augmenting limited datasets with synthetic 

samples, enabling machine learning models to achieve better performance and generalization. This study focuses on integrating GANs to 

generate synthetic hydrogeochemical data tailored to geothermal systems in Western Anatolia, aiming to enhance reservoir temperature 

prediction accuracy. By addressing the limitations of small datasets, the study seeks to improve machine learning models' predictive 

capabilities and validate the enhanced models by comparing their predictions with actual reservoir temperatures. Through this approach, 

it highlights the potential of GAN-augmented datasets in advancing geothermal exploration and improving reservoir temperature 

estimation, paving the way for more accurate and efficient geothermal resource assessments. 

2. METHODOLOGY 

2.1 Study Area and Data Collection 

The Western Anatolia is mainly renowned for its extensive geothermal resources, primarily concentrated along the Büyük Menderes and 

Gediz Grabens. These grabens, formed by extensional tectonics, exhibit high heat flow, making them some of the most promising 

geothermal areas such as; Kızıldere, Germencik, Alaşehir, Salihli geothermal fields in Türkiye. The geothermal fields in this region are 

characterized by a variety of manifestations, including thermal springs, fumaroles, and wells, with reservoir temperatures often exceeding 

200°C. The diversity of hydrogeochemical conditions in these fields provides an excellent basis for understanding geothermal systems. 

The amount of dissolved ions in geothermal fluids in general depends on the outcome of the reservoir temperature and geology. Due to 

water-rock interaction, fluids in the deep reservoir, especially under high temperature and pressure conditions, incorporate ions from the 

adjacent rock as they rise towards the surface, providing important information about the environment from which they came when they 

reach the surface especially Na+, K+, Ca2+, Mg2+, Cl- ions and SiO2, boron concentrations are important hydrogeochemical parameters to 

reveal this deep water-rock interaction. Therefore, it is predicted that these analytes can be used to estimate the reservoir temperature. 

The hydrogeochemical dataset used in this study originates from our previous Tut Haklidir and Haklidir 2020 study, comprising 

measurements from 83 thermal springs and geothermal wells in the region. The dataset includes critical parameters essential for reservoir 

characterization: temperature, pH, electrical conductivity (EC), and the concentrations of Na+, K+, Cl-, SiO2, and Btotal. of the 83 samples, 
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66 were utilized for training machine learning models, while 17 were reserved for testing purposes. Reservoir temperatures were either 

directly measured from geothermal wells or estimated using established geothermometer equations for thermal springs. 

2.2 Generating Synthetic Hydrogeochemical Data Using Generative Adversarial Networks 

In this study, a Conditional Tabular Generative Adversarial Network (CTGAN) framework was implemented to generate synthetic 

hydrogeochemical data, enhancing the training dataset for reservoir temperature prediction in Western Anatolia’s geothermal systems. 

(Xu et al., 2019) The CTGAN architecture comprises two neural networks—a generator and a discriminator—that work in tandem to 

learn the distribution of hydrogeochemical features from the real dataset. Below, we describe the design, hyperparameter settings, and 

workflow for synthetic data generation and validation with CTGAN (Xu et al., 2019). 

The Generative Adversarial Network (GAN) training workflow for generating synthetic hydrogeochemical data involves a series of well-

defined steps, as illustrated in Figure 2. The figure visually represents these stages, highlighting the critical transformations and 

interactions between different components of the workflow. By following this structured process, we ensured the generation of high-

quality synthetic data, which significantly improved the predictive capabilities of the reservoir temperature models. This process is 

designed to ensure a seamless and effective augmentation of the original dataset. 

 

Figure 2: GAN Training Workflow 

As illustrated in Figure 2, the CTGAN-based workflow for generating synthetic hydrogeochemical data involves several stages: 

● Raw Hydrogeochemical Data Collection: The workflow begins with the collection of raw hydrogeochemical data from Western 

Anatolia’s geothermal systems. This dataset contains critical features such as pH, electrical conductivity (EC), and ion 

concentrations (e.g., Na+, K+, Cl-, boron), along with the reservoir temperatures. These features form the foundation for building 

a robust machine learning model. 

● Feature Selection: From the raw dataset, eight key features were selected for their relevance to reservoir temperature prediction: 

pH, EC (microS/cm), K+ (mg/l), Na+ (mg/l), Boron (mg/l), SiO₂ (mg/l), Cl (mg/l), reservoir temperature (°C). These features 

were chosen based on domain knowledge and their statistical correlation with reservoir temperatures. 

● Normalization: First, we applied a log transform (log1p) to wide-ranging features (EC, K, Na, Boron, SiO₂, Cl) to reduce the 

skew and stabilize training. To standardize the dataset and ensure compatibility with the neural network models, all numerical 

features were normalized to a range of 0 to 1 using the MinMaxScaler technique. Normalization prevents scale differences 

among features from affecting model performance. 

● GAN Design: The architecture of the Generative Adversarial Network (GAN) utilized in this study was meticulously crafted to 

address the unique characteristics of hydrogeochemical data. We implemented a Conditional Tabular GAN (CTGAN) 

framework, selected for its proven capability in generating high-fidelity synthetic tabular data. (Xu et al., 2019) To facilitate 

accurate modeling, a comprehensive metadata schema was established from the log-transformed dataset, ensuring that each 

feature's data type and distribution were precisely recognized by the model.  

The CTGAN framework consists of two primary neural networks: the generator and the discriminator. The generator network is 

designed to produce synthetic hydrogeochemical samples from random noise vectors, effectively learning to replicate the 

underlying distribution of the real data. Conversely, the discriminator network is tasked with distinguishing between genuine 

and synthetic data samples, thereby providing feedback to the generator. This adversarial interplay compels the generator to 

continuously improve its output quality, striving to produce data that the discriminator cannot easily differentiate from real 

samples.  
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Training of the GAN involves iterative optimization of both networks. (Figure 3) The generator aims to maximize the discriminator's 

error in identifying synthetic data, while the discriminator endeavors to minimize this error, enhancing its ability to accurately 

classify data samples. To ensure stability during training and prevent phenomena such as mode collapse, a gradient penalty was 

incorporated into the loss function. This regularization technique enforces Lipschitz continuity within the discriminator by 

penalizing large gradients, thereby promoting smoother convergence and more reliable training dynamics. The following 

hyperparameters were optimized based on experiments to achieve realistic synthetic data generation: 

Table 1: Hyperparameters 

Parameter Value 

Number of Samples 300 (generated) 

Batch Size 64 

Learning Rate 0.0001 

Epochs 1000 

 

 

Figure 3: Architecture of the Conditional Tabular Generative Adversarial Network (CTGAN) 

● Adversarial Training: The generator and discriminator are trained iteratively in an adversarial manner. The generator attempts 

to produce hydrogeochemical data indistinguishable from real samples, and the discriminator refines its ability to detect 

synthetic data. Training converges when both networks reach an equilibrium, leading to high-quality synthetic data. 

● Synthetic Data Generation: Once trained, the Generator produces realistic synthetic hydrogeochemical data samples that 

augment the original dataset. These samples are validated to ensure they align with the statistical properties of the real data. 

● Model Evaluation: The quality of synthetic data was evaluated through statistical and visual comparisons: 

o Kolmogorov-Smirnov (K-S) Test: Statistical similarity between real and synthetic feature distributions was assessed. 

Features such as pH, EC, and Boron showed strong alignment between real and synthetic data. 

o Visual Comparisons: Histograms and kernel density estimates (KDEs) were plotted for each feature, demonstrating 

close overlaps between real and synthetic distributions. 

o Model Performance: The GAN-augmented dataset improved the predictive performance of machine learning models 

for reservoir temperature estimation. Models trained on synthetic and real data outperformed those trained on the 

original dataset alone. 

2.3 Dataset Augmentation and Machine Learning for Reservoir Temperature Prediction 

To enhance the reservoir temperature prediction capabilities, the original dataset (Tut Haklidir and Haklidir, 2020) was augmented with 

synthetic hydrogeochemical data generated by the CTGAN model. The augmentation process involved combining the synthetic samples 

with the original dataset to create hybrid datasets with varying proportions of synthetic data. These augmented datasets were then used 

for downstream machine learning tasks. By varying the synthetic-to-real data ratios, the impact of synthetic data on model performance 

was systematically evaluated. 

A Deep Neural Network (DNN) model was employed to predict reservoir temperatures using the augmented datasets. The workflow 

involved the following steps: 

● Re-training with Augmented Data: The DNN model was re-trained using the hybrid datasets that combined real and synthetic 

data. This approach allowed the evaluation of the synthetic data's contribution to the model's predictive accuracy. 

● Hyperparameter Tuning: To optimize the DNN's performance, hyperparameters such as the number of layers, neurons per layer, 

learning rate, and batch size were systematically tuned. Grid search and random search techniques were applied to identify the 

best-performing configuration. 
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● Performance Comparison: The augmented datasets were compared against the model trained solely on the original dataset. 

Evaluation metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to assess the impact 

of dataset augmentation. 

3. RESULTS 

The results of this study, focusing on synthetic hydrogeochemical data generation for the Western Anatolia geothermal systems, 

demonstrate the effectiveness of Generative Adversarial Networks (GANs) in addressing data scarcity and improving reservoir 

temperature predictions. Below, we summarize the key findings, supported by statistical analyses, visualizations, and predictive model 

evaluations. 

3.1 Comparison of Real and Synthetic Data 

To validate the quality of the generated synthetic hydrogeochemical data, we compared it with the original hydrogeochemical dataset via 

descriptive statistics, Kolmogorov-Smirnov tests, and histogram overlays: 

● Kolmogorov-Smirnov (K-S) Test: The Kolmogorov-Smirnov (K-S) test results indicate the degree of alignment between 

synthetic and real data distributions. A lower K-S statistic and a higher p-value suggest a better match. Below is a summary 

table of the results (Table 2): 

Table 2: Kolmogorov-Smirnov (K-S) Test Results 

Feature K-S Statistic P-Value Alignment 

pH 0.0847 0.7122 Strong alignment 

EC (microS/cm) 0.0830 0.7352 Strong alignment 

K+ (mg/l) 0.1263 0.2369 Good alignment 

Na+ (mg/l) 0.1706 0.0424 Marginal alignment 

Boron (mg/l) 0.1359 0.1704 Good alignment 

SiO₂ (mg/l) 0.0865 0.6877 Strong alignment 

Cl- (mg/l) 0.1001 0.5075 Good alignment 

Reservoir Temperature (°C) 0.1586 0.0711 Marginal alignment 

 

Overall, these K-S results suggest that most features exhibit strong or good alignment with the real distributions. Features such 

as pH, EC, boron, and SiO₂ demonstrate strong statistical alignment, while Na and Reservoir Temperature show marginal 

alignment. These results indicate that the synthetic data retains key statistical characteristics of the original dataset, making it a 

viable augmentation for hydrogeochemical analyses. 

● Statistical Comparison: Table 3 shows summary statistics (mean, standard deviation, min, max) for both real and synthetic 

datasets. Table 3 presents summary statistics (mean, standard deviation, min, max) for both real and synthetic datasets. Most 

features exhibit aligned ranges and central tendencies. Features such as pH, Boron, SiO₂, and Cl- show good agreement in both 

descriptive statistics and K-S test results. Meanwhile, Na+ and reservoir Temperature reveal slightly larger deviations, consistent 

with their marginal alignment scores in the K-S test. 

Table 3: Statistical Comparison 

Feature Real Mean Synth Mean Real Std Synth Std Real Min Synth Min Real Max Synth Max 

pH 7.53 7.46 0.78 0.70 5.80 6.00 9.10 9.10 

EC (microS/cm) 2940.32 3095.75 1731.24 1800.65 350.00 403.56 5890.00 5890.00 

K (mg/l) 64.94 73.18 56.87 61.38 0.80 1.21 191.00 191.00 

Na (mg/l) 622.67 694.23 503.65 524.59 2.60 7.30 1513.00 1513.00 

Boron (mg/l) 10.44 9.49 10.12 7.94 0.00 0.00 38.00 32.98 
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SiO₂ (mg/l) 168.69 170.61 154.65 159.88 11.00 12.25 650.00 650.00 

Cl (mg/l) 81.14 78.62 64.07 51.43 3.00 3.00 326.00 279.00 

Reservoir Temperature (°C) 145.67 153.74 56.82 53.98 50.00 60.00 245.00 245.00 

 

● Visualization: Figures 4 illustrate histogram overlays with KDE (Kernel Density Estimate) curves for each feature, comparing 

real data to synthetic data distributions generated using CTGAN 

 

Figure 4: Visualization 

The comparison reveals that CTGAN successfully captures the primary distribution characteristics of the real data for most 

features, as evidenced by substantial overlap in the histograms and KDE curves. This indicates that the synthetic data effectively 

models the main modes of the real data. However, some minor discrepancies were observed, particularly in the tails and 

secondary modes of certain features. These differences suggest that while the synthetic data aligns well with the real data in 

general, there are areas where the model could be further refined to improve accuracy. 

Features such as pH and reservoir temperature show excellent alignment, with synthetic data closely mirroring the real data's 

central trends and capturing key distribution structures, including bimodal patterns where applicable. Other features, such as 

EC, K, and Na, exhibit slight overestimations or underestimations in specific ranges, particularly in higher concentration levels 

or mid-range densities. Additionally, features like boron, SiO2, and Cl_ reveal good overall alignment but display minor 

deviations in density at the distribution tails. 
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3.2 Reservoir Temperature Prediction Evaluation 

To evaluate the impact of synthetic data on reservoir temperature prediction, a Deep Neural Network (DNN) model was re-trained using 

datasets augmented with varying proportions of synthetic hydrogeochemical data. The analysis demonstrated significant improvements 

in prediction accuracy and reliability: 

● Performance Improvements: Models trained on augmented datasets achieved consistently lower Mean Absolute Error (MAE) 

and Root Mean Squared Error (RMSE) compared to models trained solely on the original dataset. 

● Optimal Synthetic-to-Real Data Ratio: Among the tested ratios (1:1, 2:1, 3:1), the 3:1 ratio provided the best results, achieving 

an RMSE of 6.44 and an MAE of 4.72. 

● Enhanced Generalization: The inclusion of synthetic data improved the model's ability to generalize, particularly in regions of 

the feature space that were underrepresented in the original dataset. 

Table 4: Performance Metrics for DNN Models Trained on Different Datasets 

Dataset MAE RMSE 

Original Dataset (Tut Haklidir and Haklidir, 2020) 6.43 8.25 

Augmented (1:1 ratio) 5.12 6.94 

Augmented (2:1 ratio) 4.87 6.57 

Augmented (3:1 ratio) 4.72 6.44 

 

These results underscore the potential of synthetic data in improving the accuracy and robustness of reservoir temperature prediction 

models, particularly when original datasets are constrained in size or exhibit feature imbalances. 

4. DISCUSSION AND CONCLUSION 

This study demonstrates the effectiveness of Conditional Tabular Generative Adversarial Networks (CTGANs) in generating synthetic 

hydrogeochemical data and enhancing reservoir temperature prediction in geothermal systems. By integrating synthetic data with the 

original dataset, the research addressed challenges associated with data scarcity and feature imbalance, leading to significant 

improvements in machine learning model performance and generalization. 

The synthetic data generated by the CTGAN closely captured the primary distribution characteristics of the original hydrogeochemical 

dataset. Kolmogorov-Smirnov (K-S) test results indicated strong or good alignment for most features, such as pH, EC, boron, and SiO₂, 

showcasing the high fidelity of the synthetic data. However, marginal alignment was observed for features like Na and reservoir 

temperature, particularly in the tails or secondary modes of their distributions. While the synthetic data successfully reflected central 

trends, these discrepancies suggest that extreme values and rare patterns could be better represented with further refinements to the model. 

The integration of synthetic data into the machine learning pipeline for reservoir temperature prediction yielded significant benefits. 

Models trained with augmented datasets consistently outperformed those trained solely on the original dataset, achieving reductions in 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Among the tested synthetic-to-real data ratios, a 3:1 ratio provided 

the best results, demonstrating the importance of balancing synthetic and real data for optimal performance. Moreover, the synthetic data 

enhanced the model's ability to generalize across the feature space, particularly in regions underrepresented in the original dataset. This 

improvement underscores the value of data augmentation in addressing limited data diversity, a common challenge in geothermal research. 

In summary, the findings confirm that CTGAN-generated synthetic data can augment real datasets effectively, improving both model 

accuracy and reliability in reservoir temperature prediction. The ability of synthetic data to enhance model generalization further highlights 

its potential as a practical solution for data-constrained applications. Future efforts should focus on refining the CTGAN model to better 

capture extreme values and rare patterns, as well as exploring alternative generative models and hybrid approaches to enhance the quality 

of synthetic data. These advancements could lead to more robust and accurate predictions, ultimately supporting better exploration and 

management strategies in geothermal energy systems. 
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